Real World Outage Planning and Control

presented by
Mike Stone
wl Professional Project Management Services

Session Rules

- Ask questions when confused.
- Only one person can talk at a time.
- Everyone participates.
- No such thing as a dumb question.

Here's What We're Going to Tell You!

Define your work in detail
Estimate resources and durations
Assign work to individuals not groups
Track hours and cost
Work every minute that is available

Your Job is Not Simple!

$1^{\text {st }}$ you're going to plan how you're going to develop your plan

Then, you have to plan the outage
Manage and control the work
Report the status to your boss
Most importantly, you have to manage peoples expectations

Defining Phase Objectives / Goals

You have to know the real objectives for this season's outage.

- Absolute shortest time?
- Absolute lowest cost?
- Maximum production?
- Best economic advantage to the plant?

Outage Economics 101

Every system has an economic value.
Every project can be accelerated.
Nominally, the marginal daily profit of a system is the maximum acceleration cost you should be willing to expend for a day of acceleration.

Maximize Benefits

Time vs. money
Faster projects increase cost of work.
Faster projects decreases lost production revenues.

You must find the equilibrium between the speed and the additional cost.

Construction Cost vs. Time

maximize project value

PRIMAVERA゚

Long Outages Cost More

Cost Benefit Analysis

Real Life Example

Shorten Outage by Eiminating Work

There are three work phases to every outage:

- Work that can be done pre-outage
- Work that can only be done during the outage
- And work that can be done post-outage

Eliminating any work that can be done in a non-outage situation is critical.

Simplify Scope Definition w/ Excel
WBS for Construction of a Small Building

1	Foundations				OBS / Responsibility
	1.1	Clear Site			
	1.2	Excavate for Foundations			
	1.3	Pour Concrete			
		1.3 .1	Piers		
			1.31 .1	Survey locations for piers	A-1 Surveying
			1.3 .1 .2	Drill piers - place steel - pour	Real Deep Drilling Co.
			1.3 .1 .3	Tie steel cages for piers	Bob's Re-Bar Service
		1.3 .2	Footings		
		1.3 .3	Slab		

For every task-identified estimate:
 - Resources required
 - Equipment
 - Materials

For every task, estimate the duration

Duration = Work / Productivity

You can not estimate durations without making assumptions about which resources will be available and their productivity period!

Work To Be Performed

= Duration Productivity Rate

Productivity per Man x No. of Men $=$ Productivity Rate

Estimating

Develop a worksheet for each activity identified

No exceptions

Scope / Productivity = Duration

Labor - The Biggest Variable

Sequence the Activities

Place the activities in the most logical sequence

- Only consideration is physical constraint
- Don't worry about who will do the work
- Don't worry about rolling crews, etc.

CPM Schedule

If you are not scheduling using a CPM schedule - you're not scheduling

$\stackrel{\circ}{2}$
maximize project value

Does Anyone Know What This Is?

maximize project value

Topological Construction Schedule

Sequencing

The right sequence is much more important than the planned dates

If You Have a Good Sequence!

A schedule with good logic has a very good chance of working properly, even if all of the estimated durations are wrong.

If You Have a Bad Sequence!

A schedule with bad logic has virtually no chance of working correctly, no matter the accuracy of duration estimates!

Some Simple Rules

Every activity (except the first and last) MUST have a predecessor and successor activity - period.

Keep Activities Small

Activities need to be broken into small enough portions that they can be sequenced in relation to other tasks and areas of the project easily.

Accountability

Activities need to be broken into small enough pieces so that only one person is responsible for the activity.

maximize project value

Critical Resources and Resource Leveling

Critical resources are not craftsman or equipment.

You can get more with a phone call and money!

Critical Resources

SUPERVISORS

The most critical resource is the number of responsible people that can be assigned and held accountable to complete tasks

Assign Every Task to a Responsible Person

 Accountable for Its CompletionWhen you run out of names, you've reached the limit of what will get done in that day.

On most outages, a lead person or foreman can not oversee more than about three tasks per day.

Resource Leveling

Don't Stack Activities
Reassign activities to uniformly spread the work for each lead person over the outage and eliminate non-work periods and over subscribed periods.

Do String Activities

Bob

Band by Person

Band by person Color by person
Look for blank space or for stacked activities

Band by Person (cont.)

Band by person Color by person
 Look for blank space or for stacked activities

Work All of the Time!

168 hours in a week 5×8 's 40 hrs 24%

Most projects, even 5×10 's 50 hrs 30% accelerated | projects, use less | 6×12 's | 72 hrs | 43% |
| :--- | :--- | :--- | :--- |
| than 40% of the | 7×12 's | 84 hrs | 50% | available time.

Night Shift Syndrome

Poor productivity
 Caused by least skilled workforce
 Caused by poor supervision

Night Shift Solutions

Solve by assigning more senior supervisors and craftsmen to night shifts

Be prepared to pay a shift differential
Project managers have to work nights, too!

Anticipate Productivity Loss

Figure 2-2. Summary of the productivity loss data-overtime.
Figure is based on information from Overtime and Productivity in Electrical Construction National Elec-
trical Contractors Association, 1989.

Anticipate Non-Work Periods

Don't plan outages that will go through major holidays
If you must, anticipate loss in productivity or a loss in attendance
Also high probability of non-delivery by suppliers

Plan on multiple shifts

Increase critical resources

Means more supervision -

- Assistant project managers
- Superintendents
- Foreman
- Lead craftsmen

Bag and Tag

Pre-package nuts/bolts/gaskets for particular tasks - minimize time looking for parts

- Palletize parts
- Use bins
- Piles as a last resort

Organize Laydown Areas by Task

A1			
A3			
A2	B1		
A5			
A7			
A4	B3		
A6	B5		
A8	B7		
A10	B9		B6
:---	:---		
B8		B10	
:---	:---		

Organize Laydown Area by Foreman or by Equipment / System

PRIMAVERA

Walkdowns

Prior to finalizing schedule and duration estimates, have each responsible person walk down their list of items.

Negotiations with Lead People

After walkdowns have been completed, get 100\% buy-in from each person.
"I can depend upon you to complete your tasks in the assigned timecorrect?"

Negotiations with Lead People (cont.)

maximize project value

If there is any hesitation, negotiate to supply more resources, lengthen the duration, or make other changes before you finalize the plan.
Do not go into the outage without 100\% buy-in from every lead person for his/her portion of the work.

Resource and Cost Loading

Only two resources are necessary to measure status and progress

- Cash value
- Hours

Everything else is just extra - keep it simple.

Earned Value

If you're not measuring progress and performance using earned value you're not measuring progress or performance.

Earned Value (cont.)

Cash allows earned value measurements

 on the dollar values- Can be skewed by major equipment deliveries
- Can be skewed by materials / erection equipment
- Project managers often don't have control over the price of materials, etc.

Eamed Value (cont.)

Hours allows earned value measurements on the actual effort plus provides a basis for job population counts.
Project managers have control over

- Labor
- Amount of labor available
- Application of labor

Performance Measurement and Reporting

If it seems to complicated, simplify it to fit your projects.
Remember, during an outage updates and progress reporting must be done daily or even with every shift change.

Earned Value

maximize project value

Hours - Daily amd Cumulative

One Page Status Summaries

Consider multiple small graphs all using the same time scale
Allows reviewer to get the big picture quickly

Competitor Cement - Michigan Annual Maintenance Outa	$\text { Day } 8 \text { of } 17$ Status Summary - Spring 2002
Peformance ndicies	Earned Value - Manhours

Here's What We Told You!

Define the work
Plan your work
Assign every task to someone
Perform walkdowns in advance

Here's What We Told You! (cont.)

Negotiate for 100\% buy-in
Measure - report by person
Organize parts / materials logically

Two Most Important Points

Most critical resource is supervision Work all of the time that is available

Questions?

